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Abstract

An adaptive test can usually match or exceed the measurement precision of conventional

tests several times its length. This i Icreabed efficiency is not without costs, however, as the

models underlying adaptive testing m ike strong assumptions about examinees and items. Most

troublesome is the assumption that item pools are unidimensional. Because truly unidimensional

item pools are the exception rather than the rule, procedures have been established for handling

multidimensional pools. One option is to insure that every adaptive test administered measures

the same compc3ite of the multiple abilities represented in the item pool. However, this

approach forfeits information by losing the multidimensional structure of the item pool. The

alternative is to retain this structure by splitting the item pool into more unidimensional subsets

and administering each separately. One major drawback with this approach is the increase in

testing time. In this paper we propose a third approach called concurrent adaptive

measurement. In the new approach collateral information, information that an item provides

about a secondary ability, is used to update ability estimates obtained from adaptive tests

aGministered in separate content areas.
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Concurrent Adaptive Measurement of Multiple Abilities

Efficiency is one of the principle advantages afforded by computerized adaptive testing

(CAT). Conventional tests can waste time by presenting examinees items that are either much

too easy or much too difficult. These inappropriate items contribute essentially no measurement

information and thus can be excluded without affecting test quality. Exclusion of inappropriate

items is the basic tenet of adaptive testing, where item and test difficulty are tailored to the

examinee's level of ability. By presenting only appropriate items, a relatively short adaptive test

is able to match the measurement precision of conventional tests many times its length.

The increased efficiency of adaptive testing is not without cost, however, as the models

underlying CAT make strong assumptions about examinees, items, and their interaction. Most

troublesome is the assumption that item pools are unidimensional, or that each item is measuring

the same trait or exact composite of multiple traits. This assumption is rarely tenable, with

unidimensional pools the exception rather than the rule. Most item pools can be broken down

into more homogeneous subsets, each more nearly a unidimensional measure of a narrower, more

specific trait. For example, items collectively designed to measure mathematicsproficiency can

be further classified as measures of numerical operations, algebra, geometry, and so on.

Item response theory (IRT) models have been found to be fairly robust to the kind of

hierarchical multidimensionality typically observed in a broad test of mathematics (Reckase,

1979; Drasgow & Parsons, 1985). However, their applications to adaptive testing may still be

compromised since unidimensionality is critical when different examinees are administered

different sets of items. Ackerman (in press) demonstrated that if tests administered in a CAT

are not constrained to sample similar proportions of each content area obtained scores may not

be comparable across examinees. Using a multidimensional mathematics pool, Ackerman

demonstrated that it is possible for examinees at one level of ability to be presented primarily

items measuring numerical skills, while examinees at a higher level of ability might receive only

geometry items because of their higher level of difficulty. In essence, these two groups of

4
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examinees were administered tests of different content, and thus, their scores are not directly

comparable.

Several different approaches can be used to resolve the problems presented by

multidimensional item pools. All begin by classifying pool items into more homogeneous

categories, or content domains. Each of these domains is expected to provide a nearly

unidimensional measure of a specific ability. One approach to test administration, called content

balancing, insures that each adaptive test presented includes some fixed proportion of items form

each content domain. For example, the complete test may be composed of 20% numerical skills,

50% algebra, and 30% geometry items. In this way, each adaptive test is constrained to measure

the same unidimensional composite of tht multidimensional item pool. Unfortunately, this

approach forfeits information by losing the multidimensional structure of the item pool. The

unidimensional composite fails to convey any variation across examinees in their profile of

abilities in the more specific content domains.

An alternative is to treat domains separately and administer an adaptive test in each

content. While this retains the multidimensional structure of the item pool, it does so at the cost

of dramatically increasing administration time. Thus, the decrease in testing time usually

afforded by CAT could be forfeited. Because content domains worth measuring are found to be

nearly universally positively correlated, some small increase in efficiency may be afforded by

using the ability estimates from previously administered domains to derive starting points in

subsequent domains. However, evidence suggests that the gain in efficiency is small in most

cases (Green & Thomas, 1990).

In this paper we outline a new approach, one that retains the multidimensional structure

of the item pool without a serious loss of testing efficiency. The viability of the new approach,

called concurrent adaptive measurement, is demonstrated in a monte carlo simulation.

Concurrent adaptive measurement

Because content domains are correlated, an item from one domain will contribute

measurement information about all other domains. This is most easily illustrated by taking, an
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item classified as measuring predominantly numerical skills and embedding it in a test containing

only algebra items. The biserial correlation (or the IRT discrimination paiameter, a) of the alien

item will be reduced compared to its biserial value in it's proper context of the numerical skills

domain, but it still will be nonzero. That is, each of the numerical skill items can provide

information for estimating ability in the algebra domain and vice versa.

Administering each content domain independently wastes whatever information an item

provides outside its own content domain. Through concurrent adaptive measurement, this

information can be recovered by allowing every ;tem presented to contribute to the estimation

of ability in each domain. This requires that every item in the CAT pool have multiple sets of

parameters--one for each content domain. These collateral parameters are computed by

calibrating an item with respect to the trait defined solely by the members of a given content

domain. One method of performing this calibration would be to first estimate IRT item

parameters for each domain independently. Items outside the content domain are then included,

one at a time, and calibrated while keeping the valid parameters of the "home" domain iterr.3

fixed at their original estimates.

A more efficient method can be derived from the work of Wang (1986). Wang

demonstrated analytically how two-dimensional item parameters and a two-dimensional

underlying ability distributions get mapped into a unidimensional latent space. Essentially

Wang's formulation enables one to compute 2PL IRT item parameters from a marginal item

characteristic curve (ICC) that is computed in the direction of what she termed the reference

composite.

The reference composite is based upon the first principle component of the AQA' matrix

where A is a matrix of two-dimensional item discrimination parameters and 0 is the 01,02

variance-covariance matrix. The angle associated with the reference composite defines the

meaning of the unidimensional scale in terms of a 01-02 composite. That is, if the reference

composite angle was at 45° the unidimensional 0 scale could be interpreted as an equal weighting

of 01 and 02 abilities.

Unidimensional parameters for a given item can be estimated from the computed marginal

ICC in the direction of the reference composite. This ICC is a function of the item's two-
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dimensional parameters, the specified reference composite direction, and the characteristics (i.e.,

vector of 01 and 02 means, and the 01,02 variance-covariance matrix) of the hypothesized two-

dimensional underlying ability distribution. Valid unidimensional parameters would be obtained

by using the reference composite for the item's home pool. Collateral item parameters are

determined by using the using the reference composite of a pool of items measuring another

correlated skill.

Once item parameters have been obtained, administration of the adaptive test can proceed

in either of two ways. If the principle goal of testing is to produce a unidimensional composite

estimate of proficiency for an entire pool, test administration would follow the content balancing

model. However, in additiciii to the unidimensional composite, abilities could be further refined

by using collateral parameters to estimate abilities within each content domain. This would yield

a better estimate of the unidimensional composite, but somewhat less precise measures in the

individual domains.

If, on the other hand, the principle goal of testing was an accurate estimation of each

content domain, the domains could be presented sequentially and independently. The important

difference between this approach and the pool splitting approach outlined above is that

information would be accumulated in all content categories regardless of which is actually being

presented. After the last content area has been administered final ability estimates for each

content category would be the accumulation of the items administered in the specific category

plus the information obtained via the collateral parameters from items administered in each of

the other content areas.

Method

To evaluate the effectiveness of the concurrent adaptive measurement procedure the

following study was conducted. Two two-dimensional item pools of 200 items each were created.

The item parameters for Pool 1 were randomly selected with the constraint that the two-

dimensional item vectors (c.f., Reckase, 1985) lie within a 30° of the 01 axis. All of the item

parameters for Pool 2 were the same as those in Pool 1 except the ai and a2 two-dimensional
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discrimination parameters were reversed. Thus, the vectors for these item fell within 30° of the

02 axis. The generated two-dimensional item parameters were reviewed and thought to be

similar to those one would obtain in a typical two-dimensional IRT calibration of cognitive test

data. A plot of the item vectors for each pool in the two-dimensional ability plane is shown in

Figure 1.

Insert Figure 1 about here

The length of the item vector represents the amount of discrimination. The base of each

vector is orthogonal to the item's p = .5 equiprobability contour and the angle the vector makes

with the 0/ axis represents the 01,02 composite that is best measured by the item. The

reference composite for each pool is illustrated by a dotted vector. The reference composite for

Pool 1 had an angle of 15° and for Pool 2, 75°.

Valid and collateral unidimensional item parameters were obtained for each pool for each

of three different 01,02 correlational conditions, .3, .5, and .7. That is, for Pool 1

unidimensional item parameters were estimated from the marginal ICCs using the 150 reference

composite (i.e., the valid parameters) and using the 750 reference composite direction (i.e. , the

:ollateral parameters). This process was repeated for each correlational level. The same process

was used to obtain unidimensional estimates for the Pool 2 items.

For each pool the mean and standard deviation of the valid estimated item parameters

were gi = 1.58, ao. = .49, IL6 = .00, and oi = .79. The mean and standard deviation of the

estimated collateral item parameters were for r= .7: lid = 1. 1, = pl.) =-.01, and

r=.5: p,a = .92, oa=.24, gi=-.05, and oi=.86. r=.3: ita = .75 , oi=.21, its =-.06, and

05=1.00.

Once the valid and collateral item parameters were obtained the two pools were used in a

simulated CAT at each correlation level. In the CAT the most informative item was selected at

the current estimated ability level. Bayes modal ability estimates (using a N(0,1) prior) were

updated after each item was "administered". The number of items administered in each
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simulated CAT was fixed at 15.

Examinees were selected from a two-dimensional grid. One-hundred examillees were

simulated at each of 81 01,02 levels (from -2.0 to +2.0 in increments of .5 along each ability

dimension.) Thus, for each of the nine specified levels on the 01 ability scale there were 900

examinees simulated. The same was true for each specified level of 02.

The amount of information that was gained using the collateral item parameter estimates

was assessed by examining the standard error of e and the bias (6 - 0) at each of the nine theta

levels. That is, the difference in the bias and standard error values between abilities estimated

with valid items only and abilities estimated with both valid items and colllateral items were

compared.

Rather than using empirical estimates of these two measures it was decided to obtain

theoretical estimators using the formulas suggested by Lord (1983). The standard error of e was

calculated for each examinee using the IRT information function and the parameters of the items

that were administered. At each 0 level the information was averaged over all (900) examinees

and then was used to compute the standard error via the formula

1

Bias was computed using the formula (Lord, 1983, p.237)

1 "Bias(0) - E a/L(13, - .5)
/2i-i

where a. is the discrimination parameter of item i,t

Pi is the probability of a correct response for the 2PL IRT model, and,

(p1,12
with P' being the first derivative of P(0) with respect to 0.

PP1

The theoretical values were computed because it was believed that such an approach would

provide an optimum comparison without introducing error accrued in the estimation of abilities.
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Results

The Test 1 pool information function and the collateral information function on Test 1

from the Test 2 pool for each level of correlation are displayed in Figure 2. As might be

expected, the amount of collateral information increases as the level of correlation increases.

This occurs because as the correlation increases the two-dimensional latent space is, in a sense,

collapsing into a single dimension, causing the reference composites to converge. Because the

two-dimensional difficulty parameters were randomly selected from a N(0,1) distribution they

produced a balance of easy and difficult items. Thus, the pool information fllnction and well as

the collateral information functions to be centered around 0 = 0.0.

Insert Figure 2 about here

The two estimates of bias for both Test 1 and Test 2 at each of the three correlational

levels are displayed in Tables 1, 2 and 3. A graph of Table 3 is shown in Figure 3. Bias values

based on the administration of 15 items from each pool are labeled as Test I and Test 2. Bias

values that are based upon the estimated unidimensional parameters of both valid items and the

collateral item parameters are labeled Test IA and Test 2A.

It appears that the difference between the three correlational levels is quite negligible and

perhaps due just to random fluctuation. However, the addition of collateral information did

decrease the amount of bias at each 0 level in every case. ior every specified level of

correlation bias was negatively correlated with 0. Zero bias occured at 0 = 0 for each

correlational level.

Insert Tables 1, 2, & 3 and Figure 3 about here
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The values of the theoretical standard errors for the two 0 estimates at each of the three

correlational levels for each are listed in Tables 4, 5, and 6. These tables are labeled in the same

manner as their bias counterparts. As was expected the standard error of the condition 0

distributions decrease as the 01 _02 correlations increased, although the decrease appeared to

quite small. In a similar manner the ability estimates computed using the collateral information

had a smaller standard error across all ability levels across all correlational conditions.

The inverse relationship between the IRT information function and standard error is

clearly illustrated by comparing Figures 2 and Figure 4. Figure 4 is a plot of the standard error

values listed in Table 6. The advantage of using collateral information is clearly illustraled.

Insert Tables 4, 5, and 6 and Figure 4 about here

Discussion

The purpose of this paper was to illustrate how collateral information from correlated tests

can be used to improve CAT ability estimates. This study employed unidimensional estimates

of two two-dimensional item pools, each measuring a different 01,02 composite. Results

indicate that both bias and the standard error of the estimated ability decrease when collateral

information is used. Likewise, as the correlation between the latent skills increased, there was

a drop in the standard error of 6, albeit quite small.

This study has presented an idea which takes advantage of the richness most items

possess. It is suspected that most item pools are in actuality multidimensional and that

representing them via unidimensional parameter estimates is limiting the amount of information

that is available. In reality practitioners usually do not calibrate items to fit multidimensional

models, but instead work with unidimensional estimates. More research needs to be done to help

establish guidelines for using multidimensional analyses. It would be helpful if criteria could be

1 1
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established which would help the practitioner decide whether the increase in measurement

precision through the use of collateral item information is warranted.



12

References

Ackerman, Terry (in Press) The use of unidimensional item parameter estimates of
multidimensional items in adaptive testing. Applied Psychological Measurement

Drasgow, F. & Parsons, C.K. (1985). Application of unidimensional item response theory
models to multidimensional data. In D.J. Weiss (Ed.), Proceedings of the 1982 Item
Response Theory/Computerized Adatztivs Testing Copference 6.Minneapolis: University
of Minnesota, Department of Psychology, Computerized Adaptive Testing Laboratory,
1982.

Green, B.F., & Thomas, T.J. (1990). Utility of predicting starting abilities in sequential
computerized adaptive lots. Presented at the Annual Meeting of the Psychometric
Society, Princeton, NJ.

Lord, F.M. (1983) Unbiased estimators of ability parameters, of their variance, and of their
parallel-forms reliability. Esychontujia, 48, 233-245.

Reckase, M.D. (1979). Unit.actor latent trait models applied to multifactor tests: Results and
implications. Journal of Educational Statistics, 4 207-230.

Reckase, M.D. (1985, April). The difficulty of test items that measure more than one ability.
Paper presented at the annual meeting of the American Educational Research Association,
San Francisco.

Wang, M. M. (1986). Fitting a unidimenslona1 inixlellginultialiesmuKskta, A
paper presented at the annual Office of Naval Research Contractor's Meeting. Knoxville,
TN.



13

Table 1.
Bias values for abilities estimated usina Testi Test 2.
Test 1A. and Test 2A with 01J&2 abilities correlated .3.

Bias (o - 0)

0 Test 1 Test IA Test 2 Test 2A

2.0 -.0777 -.0574 -.0776 -.0574

1.5 -.0521 -.0393 -.0526 -.0396

1.0 -.0232 -.0186 -.0230 -.0185

. 5 -.0078 -.0066 -.0075 -.0064

.0 .0005 .0004 0004 .0003

-.5 .0098 .0080 .0098 .0081

-1.0 0224 .0179 .0222 .0177

-1.5 .0466 .0354 .0467 .0355

-2.0 .0855 .0622 .0859 .0625
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Table 2.
Bias values for abilities estimated usinz:rest L Test 2.
Test 1A. and Test 2A with 01,Q2 abilities correlated .5.

0

Bias (6- e)

Test 1 Test IA Test 2 Test 2A

2.0 -.0764 -.0575 -.0768 -.0577

1.5 -.0524 -.0388 -.0523 -.0388

1.0 -.0229 -.0180 -.0230 -.0180

.5 -.0076 -.0063 -.0076 -.0063

.0 .0001 .0001 .0012 .0008

-.5 .0097 .0078 .0102 .0080

-1.0 .0226 .0176 .0227 .0178

-1.5 .0467 .0352 .0461 .0348

-2.0 .0857 .0630 .0854 .0629
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Table 3.
Bias values for abilities estimated using Test 1. Test 2.
Test LA._ andTest 2A with OA abilities correlatal .7.

Bias (6 - e)

Test 1 Test lA Test 2 Test 2A

2.0 -.0774 -.0609 -.0767 -.0602

1.5 -.0522 -.0394 -.0524 -.0396

1.0 -.0229 -.0180 -.0228 -.0180

.5 -.0078 -.0064 -.0073 -.0062

.0 .0009 .0006 .0005 .0003

-.5 .0098 .0077 .0099 J78

-1.0 .0225 .0178 .0222 .0177

-1.5 .0469 .0364 .0468 .0362

-2.0 .0860 .0659 .0858 .0659
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Table 4.
Standard error values of abihtils eitimatetzing.lest_L
Test 2, Test 1A., and Test 2A with 01,02 abilities correlated .3..

S.E.(6)

0 Test 1 Test IA Test 2 Test 2A

2.0 .4562 .2515 .4559 .2514

1.5 .3663 .2077 .3659 .2080

1.0 .2836 .1661 .2845 .1663

.5 .2381 .1412 .2383 .1413

.0 .2272 .1353 .2274 .1356

-.5 .2429 .1454 .2424 .1447

-1.0 .2945 .1755 .2941 .1756

-1.5 .3652 .2169 .3648 .2170

-2.0 .4568 .4571 .2704 .2711

1 *7
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Table 5.
Standard error values of abilities estimated taingjesLL
Test 2. Test IA. and Test 2A with epe2..abilitittonsigivi,I.

&E.*

0 Test 1 Test 1A Test 2 Test 2A

2.0 .4560 .2427 .4559 .2427

1.5 .3658 .2012 .3663 .2030

1.0 .2841 .1625 .2839 .1629

.5 .2386 .1391 .2383 .1397

.0 .2273 .1342 .2274 .1345

-.5 .2433 .1444 .2426 .1435

-1.0 .2941 .1742 .2943 .1744

-1.5 .3652 .2165 .3656 .2168

-2.0 .4567 .2703 .4569 .2700
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Table 6.
Standard error values of abilities estimated using Test 1.
Test 2. Teg 1A, arid Tot 2A witb 0 1,Q2 abilities correlated .7,

S.E.(6)

0 Test 1 Test lA Test 2 Test 2A

2.0 .4560 .2339 .4559 .2339

1.5 .3665 .1955 .3658 .1947

1.0 .2842 .1584 .2840 .1579

.5 .2385 .1369 .2384 .1372

.0 .2271 .1324 .2273 .1327

-.5 .2433 .1427 .2428 .1426

-1.0 .2943 .1739 .2946 .1736

-1.5 .3650 .2161 .3650 ,2159

-2.0 .4569 .2714 .4571 .2711

I ;1
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Figure Captions

Figure L Two-dimensional item vectors representing items from Pool 1 and Pool 2.

Figure 2. The Pool 1 information curve and the three collateral information curves for r = .3,
.5 and .7 from Pool 2.

Figure 3. Bias plot for Tests 1, 1A, 2 and 2a when the correlation between Test 1 and Test 2
is .7.

figuu 4. Empirical standard error plot for Tests 1, 1A, 2 and 2a when the correlation between
Test 1 and Test 2 is .7.
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